ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
S. B. Kim, W. J. G. Workman, P. A. Davis, T. Yankovich
Fusion Science and Technology | Volume 54 | Number 1 | July 2008 | Pages 248-252
Technical Paper | Environment and Safety | doi.org/10.13182/FST08-A1805
Articles are hosted by Taylor and Francis Online.
Tritiated water (HTO) and organically bound tritium (OBT) concentrations in the non-human biota inhabiting Duke Swamp were measured during the 2005 growing season. Samples of surface water, soil, plants, precipitation, wild animals and air moisture were collected from 2005 May to October at five locations in the swamp and analyzed for their tritium content. HTO concentrations in air moisture decreased with height since the tritium source is in the ground. Soil HTO concentrations were not closely related to the concentrations in nearby surface water and the HTO concentration in balsam fir needles showed no clear pattern with height. HTO concentrations in moss, grass and alder leaves decreased in September, which is the time when metabolic activity is reduced. OBT concentrations in a given compartment showed less variation than the HTO concentrations in that compartment. The OBT/HTO ratio was approximately one for soil and less than one for plants, with the exception of lichen. The OBT/HTO ratio in most wild animals was also less than one, but increased to more than 2.0 for mice. Although the tritium concentrations varied substantially in space and time in Duke Swamp, the fact that OBT/HTO <1 for most compartments suggests that equilibrium conditions hold locally.