ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
H. Takata et al.
Fusion Science and Technology | Volume 54 | Number 1 | July 2008 | Pages 223-226
Technical Paper | Waste Handling | doi.org/10.13182/FST08-A1800
Articles are hosted by Taylor and Francis Online.
Concentration profiles of tritium in cement paste, mortar and concrete were measured after exposure to tritiated water vapor for a given time. Tritium penetrated a distance of about 5 cm from the exposed surface during an exposure of 6 months. The model of tritium behavior in concrete materials reported by the present authors was developed in this study with the consideration of the effects of sand and aggregate on both the diffusion coefficient of tritiated water vapor and the isotope exchange capacity. Predictive calculations based on the tritium transport model were also carried out in some situations of tritium leakage. The results of the calculations show that a large amount of tritium will be trapped in the concrete walls, and the trapped tritium will be gradually released back to the tritium handling room over the time of months to years even after the decontamination of the room is completed.