ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Lisa A. Haynes, J. P. Kelly, David N. Ruzic, Dennis Mueller, J. Kamperschroer
Fusion Science and Technology | Volume 33 | Number 1 | January 1998 | Pages 74-83
Technical Paper | doi.org/10.13182/FST98-A18
Articles are hosted by Taylor and Francis Online.
The DEGAS neutral transport code is used in two separate cases to simulate the neutral beam box and vessel of the Tokamak Fusion Test Reactor (TFTR). For the neutral beam box simulation, known input parameters include the ion density at the source exit and the proportion of input gas that is converted to the high-energy atomic beam. The T0 current to the torus is (1.61 ± 0.03) × 1020 s-1, with the high-energy beam having a median energy above 95 keV. Corresponding results are found for the D0 current. In addition, the amount of gas reaching the torus, the pressure, and the flux and energy distributions of the ions and neutrals to the walls are found. For the tritium case, it is calculated that 92.4 ± 0.2% of the input tritium reaches the cryopanels, 6.64 ± 0.05% reaches the torus, and 1.0 ± 0.2% reaches the ion dump. In the second run, DEGAS was used to calculate the neutral atom flux and energy of particles incident on the walls of the vacuum vessel and the neutral pressure in the pump duct of TFTR during a typical supershot with a 50/50 mixture of deuterium-tritium. Output quantities are the current and energy to the bumper limiter and first wall. The total amount of tritium implanted in the vacuum vessel after 150 shots of 1-s duration is estimated to be 0.5 ± 0.1 g in the bumper limiter and 0.042 ± 0.023 g in the outer wall and pumping duct, which is well within the 5-g on-site inventory and the 2-g in-vessel inventory. The implications of these results are discussed.