ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
I. Bonnett, A. Busigin, A. Shapiro
Fusion Science and Technology | Volume 54 | Number 1 | July 2008 | Pages 209-214
Technical Paper | Waste Handling | doi.org/10.13182/FST08-A1797
Articles are hosted by Taylor and Francis Online.
Recent increased interest from regulators and the public has led more organizations to consider the environmental impact and safety considerations of tritium handling. Examples include the significance of the tritium isotope separation system on ITER licensing, remediation of ground water from power utilities and government facilities and concerns of high tritium concentrations within operational CANDU reactors.GE Healthcare, formerly Amersham plc, has been producing tritium-labelled chemicals since the late 1940s. GE's manufacturing site located near Cardiff, UK has installed a tritium waste treatment and enrichment facility to radically reduce tritium discharges to the environment. This facility employs a continuous processing plant that recovers tritium from a complex mixture of tritiated organic and aqueous waste compounds. Two isotope separation techniques are used to achieve a final pure tritium product, which is used in the manufacturing of labelled compounds.Building upon this experience, together with Special Separations Applications Inc. (SSAI), GE has developed a large-scale diffusion-based isotope separation process as an alternative to conventional cryogenic distillation. Having a tritium inventory an order of magnitude lower than conventional cryogenic distillation, this process is attractive for heavy water detritiation, applicable to single and multi-unit CANDU reactors and research reactors as well as fusion applications. Additionally, the new process has advantages of being cryogen-free, less complex, simple to operate and having improved conventional and radiological safety.