ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
T. Kawano, T. Yamano, K. Yamada, M. Tanaka, Y. Asakura, T. Uda
Fusion Science and Technology | Volume 54 | Number 1 | July 2008 | Pages 189-192
Technical Paper | Tritium Measurement | doi.org/10.13182/FST08-A1793
Articles are hosted by Taylor and Francis Online.
A tritium gas monitor was developed by applying several techniques including pulse shape analysis. The optimum analyzer values were determined for parameters such as the bias (voltage) applied to the detector, counting gas flow rate, and mixing ratio of sample air to counting gas using an enclosed tritium reference source. After applying these optimized parameters, the factor for converting counting rate to tritium concentration was determined by conducting an experiment using tritiated methane gas. Finally, the detection limit of the monitor for air samples containing tritium was determined based on the conversion factor.