ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
R. W. Margevicius
Fusion Science and Technology | Volume 41 | Number 3 | May 2002 | Pages 286-295
Technical Paper | Fourteenth Target Fabrication Specialists' Meeting | doi.org/10.13182/FST02-A17914
Articles are hosted by Taylor and Francis Online.
Beryllium is being considered as a possible capsule material for ignition targets for the National Ignition Facility. The material and machining specifications may ned to be highly restrictive, especially with regard to isotropic sound propagation. Beryllium, a hexagonal metal, displays directionally dependent sound speeds due to its anisotropic Young’s modulus. Crystallographic texture transfers this anisotropic sound speed to the polycrystal to varying degrees depending on the texture strength. From published values for the elastic compliances for Be, the value of E for single crystals was seen to vary with azimuthal angle from the c axis, from about 350 GPa parallel to c to about 290 GPa parallel to a. The longitudinal sound velocity varies with E, and experimentally measured velocities on single crystal Be are in good agreement with the derived values. The value of E for polycrystalline Be was calculated from simulated textures ranging from 1 MRD (multiples of random distribution), i.e., random, to 2, 4, 8, 20, and 40 MRD. The difference in sound speed from the fastest to the slowest direction for those textured materials were 0, 0.5, 1.0, 1.9, 3.8, and 5.4 percent respectively. Experimentally measured textures, processed by hot-pressing, swaging, and HIPping, were used to illustrate the effect of process variables on the resulting texture. These types of differences in sound speed have tremendous implications for the manner in which the beryllium used for ignition capsules for the National Ignition Facility is fabricated.