ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Robert C. Cook
Fusion Science and Technology | Volume 41 | Number 3 | May 2002 | Pages 155-163
Technical Paper | Fourteenth Target Fabrication Specialists' Meeting | doi.org/10.13182/FST02-A17893
Articles are hosted by Taylor and Francis Online.
The sound speed in a Be grain is markedly different in orthogonal directions due to an anisotropic Young’s modulus. The impact of this fact on ICF capsules machined from multi-crystalline Be is not clear, but is of concern if the shock velocity is likewise grain orientation dependent. In this paper the expected inner wall break out profile due to grain affected shock velocity variations is calculated for a Be capsule, as a function of the grain size and effective shock velocity anisotropy factor factor p = v‖ / v⊥, where v‖ and v⊥ are the effective maximum and minimum orthogonal shock speeds in a grain. In this simple model it is assumed that grain boundaries have no effect other than to mark the location where the shock speed changes as it moves from one grain to another. The grain structure of bulk beryllium is modeled by randomly placing N points in a volume V to define Wigner-Seitz cells (grains) of average volume V/N. Each grain is given a random orientation. The spherical shell wall is modeled by a 150 µm thick planar slab of this multi-crystalline material, 2πR in length where R is the capsule radius, taken to be 1000 pm. The slab is sampled at 3600 points along its 2πR length, at each point the average shock velocity through the sample is determined based on the model slab grain structure at that point. This data is used to create the expected spatial breakout profile, which is then Fourier transformed to give a power spectral representation that is compared to the current outside surface design specification. In order to match the design specification, grain diameters less than 10 pm and an effective shock velocity anisotropy, p, of less than 1.001 are necessary.