ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
R. W. Kanady
Fusion Science and Technology | Volume 54 | Number 1 | July 2008 | Pages 174-177
Technical Paper | Tritium Measurement | doi.org/10.13182/FST08-A1789
Articles are hosted by Taylor and Francis Online.
TriathlerTM Model 425-034 single vial liquid scintillation counter (LSC) counters have been in use at the Safety and Tritium Applied Research Facility (STAR) for approximately three years. During facility setup and determination of instrumentation needs to support STAR facility operations, the Triathler was chose to assess smearable tritium contamination levels for operational conditions. The Triathler was selected due to the rapid turnaround time for obtaining tritium contamination levels versus other automated batch LSC counters currently in use at the Idaho National Laboratory (INL) and other Department of Energy (DOE) installations. Operational experience with the Triathler thus far has shown a high reliability for verifying removable contamination levels at a level of < 1,000 Disintegrations Per Minute (DPM) per 100 cm2 when compared to the PackardTM Tri-Carb 1905 AB/LA Liquid Scintillation Analyzer used by the Reactor Technologies Complex (RTC) Radiochemistry Measurements Laboratory (RML).However, variances in the reported results for activity in DPM/vial from the Triathler versus the Packard Tri-Carb have been noted when operating in the range of 5,000 to 20,000 DPM. These variances make reliability and use of the Triathler suspect for verifying smearable contamination levels meet the release criteria identified in DOE Order 5400.5, Radiation Protection of the Public and Environment. Ensuring that removable tritium contamination levels on materials and equipment intended for free-release to the public are < 10,000 DPM per 100 cm2 is a requirement in the Idaho National Laboratory (INL) contract.Comprehensive cross-comparisons have been ongoing to ensure the Triathler LSC reported DPM values provide sufficient detection of smearable tritium contamination when cross-compared to other automated liquid scintillation counters available at the INL.