ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
H. Ishikawa et al.
Fusion Science and Technology | Volume 54 | Number 1 | July 2008 | Pages 127-130
Technical Paper | Blanket Design | doi.org/10.13182/FST08-A1779
Articles are hosted by Taylor and Francis Online.
Tritium release from thermal neutron-irradiated Li4SiO4 is initiated with the annihilation of E'-centers by recovering O- with diffusion of O-. Electron Spin Resonance (ESR) shows that differences in the formation of irradiation damage between 14 MeV and thermal neutrons in Li4SiO4 result in different tritium release behaviors. The kinetics for the annihilation of irradiation defects has been determined. The contribution of elastic collisions by 14 MeV neutrons was much higher than that of thermal neutrons. Isothermal annealing experiments show that annihilation of irradiation defects consisted of two processes: namely, the fast and slow annihilation processes. Their activation energies were determined to be 0.13 and 0.39 eV, respectively. Comparing the experimental results for the thermal and 14 MeV neutronirradiated Li4SiO4 shows that the activation energies of the slow annihilation process were significantly different. These results relate to the density of irradiation defects, which in turn depend on the contribution of the recoil particles produced by nuclear reactions to form irradiation damaged sites.