ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
V. K. Tangri, Sadhana Mohan, A. Narayanan, K. K. Narayan
Fusion Science and Technology | Volume 54 | Number 1 | July 2008 | Pages 113-116
Technical Paper | Blanket Design | doi.org/10.13182/FST08-A1776
Articles are hosted by Taylor and Francis Online.
A new Indian concept involving a lead lithium ceramic breeder is being explored. LLCB based tritium blanket modules require tritium extraction from lead-lithium as well as from helium purge gas. This paper addresses the concept of efficiency enhancement using high surface area, low-pressure drop structured gas liquid contactors for tritium extraction from the lead lithium. Conceptual flow schemes for both loops are discussed and critical issues are highlighted. Tritium monitoring systems (TMS) for measurement and monitoring of tritium is also dealt. A fast responding tritium monitor has also been developed for insitu measurement of tritium in water or gas form. It has been tested for liquid effluents.