ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
O. Gastaldi, P. Aizes, F. Gabriel, J. F. Salavy, L. Giancarli
Fusion Science and Technology | Volume 54 | Number 1 | July 2008 | Pages 101-106
Technical Paper | Blanket Design | doi.org/10.13182/FST08-A1774
Articles are hosted by Taylor and Francis Online.
Within the framework of the development of technology for a fusion reactor, the need of tritium breeding in order to reach fuel self-sufficiency is a major issue.The systems allowing this tritium production (breeding blanket) have to deal with a main difficulty that comes from the tendency for tritium to diffuse through hot metallic walls. Because of the double function of the blanket: i) breeding the necessary Tritium and ii) efficiently extracting the deposited heat, the coolantcontaining metallic surfaces used to promote the heat transfer lead also to a non negligible mass transfer of tritium from the breeder material towards the coolant.In order to improve the management of tritium, different studies have been launched in this field with applications to DEMO breeding blankets and to the corresponding Test Blanket Module (TBM) to be tested in ITER. The present paper is focused on the case of the helium cooled lithium lead (HCLL) blanket which is one of the two TBMs proposed by EU for testing in ITER.The study determines, for different scenarios of ITER operation (short pulse, long pulse and trains of back-to-back pulses), the flux of tritium between each circuit (mainly PbLi breeder and He coolant), and the inventories of tritium in each circuit. The establishment of mass balance equations for tritium in each circuit leads to a set of non linear differential equations solved in transient conditions since ITER pulses are too short to reach steady state. These equations rely mainly on Fick's law with a link to the tritium Sievert's constant in each metal.