ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
O. Gastaldi, P. Aizes, F. Gabriel, J. F. Salavy, L. Giancarli
Fusion Science and Technology | Volume 54 | Number 1 | July 2008 | Pages 101-106
Technical Paper | Blanket Design | doi.org/10.13182/FST08-A1774
Articles are hosted by Taylor and Francis Online.
Within the framework of the development of technology for a fusion reactor, the need of tritium breeding in order to reach fuel self-sufficiency is a major issue.The systems allowing this tritium production (breeding blanket) have to deal with a main difficulty that comes from the tendency for tritium to diffuse through hot metallic walls. Because of the double function of the blanket: i) breeding the necessary Tritium and ii) efficiently extracting the deposited heat, the coolantcontaining metallic surfaces used to promote the heat transfer lead also to a non negligible mass transfer of tritium from the breeder material towards the coolant.In order to improve the management of tritium, different studies have been launched in this field with applications to DEMO breeding blankets and to the corresponding Test Blanket Module (TBM) to be tested in ITER. The present paper is focused on the case of the helium cooled lithium lead (HCLL) blanket which is one of the two TBMs proposed by EU for testing in ITER.The study determines, for different scenarios of ITER operation (short pulse, long pulse and trains of back-to-back pulses), the flux of tritium between each circuit (mainly PbLi breeder and He coolant), and the inventories of tritium in each circuit. The establishment of mass balance equations for tritium in each circuit leads to a set of non linear differential equations solved in transient conditions since ITER pulses are too short to reach steady state. These equations rely mainly on Fick's law with a link to the tritium Sievert's constant in each metal.