ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
John Sheffield, William Brown, Gary Garrett, James Hilley, Dennis McCloud, Joan Ogden, Thomas Shields, Lester Waganer
Fusion Science and Technology | Volume 40 | Number 1 | July 2001 | Pages 1-36
Technical Paper | doi.org/10.13182/FST40-1-1
Articles are hosted by Taylor and Francis Online.
One option for making fusion power plants that could be competitive with other power plants operating during the 21st century is to make them large, e.g., 3 GW(electric) or more, to take advantage of the expected economies of scale. This study examines the effects on electrical utility system hardware, operations, and reliability of incorporating such large generating units. In addition, the study evaluates the use of the coproduction of hydrogen to reduce the grid-supplied electricity and offer the possibility for electrical load-following.The estimated additional cost of electricity (COE) for a large power plant is ~5 mills/kWh. The estimated total COE for 3- to 4-GW(electric) fusion power plants lies in the range of 37 to 60 mills/kWh.Future hydrogen costs from a variety of sources are estimated to lie in the range of 8 to 10 $/GJ, when allowance is made for some increase in natural gas price and for the possible need for greenhouse gas emission limitations.A number of combinations of fusion plant and electrolyzer were considered, including hot electrolyzers that use heat from the fusion plant. For the optimum cases, hydrogen produced from off-peak power from a 3- to 4-GW(electric) plant is estimated to have a competitive cost. Of particular interest, the cost would also be competitive if some hydrogen were produced during on-peak electricity cost periods. Thus, for a 4-GW(electric) plant, only up to 3 GW(electric) might be supplied to the grid, and load-following would be possible, which would be a benefit to the utility system.