ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Discovering, Making, and Testing New Materials: SRNL’s Center For Hierarchical Waste Form Materials
Savannah River National Laboratory researchers are building on the laboratory’s legacy of using cutting-edge science to effectively immobilize nuclear waste in innovative ways. As part of the Center for Hierarchical Waste Form Materials, SRNL is leveraging its depth of experience in radiological waste management to explore new frontiers in the industry.
I. Moysan, S. Contreras, J. Demoment
Fusion Science and Technology | Volume 54 | Number 1 | July 2008 | Pages 81-84
Technical Paper | Storage | doi.org/10.13182/FST08-A1769
Articles are hosted by Taylor and Francis Online.
For ten years French Tritium laboratories have been using metal hydride storage beds with LaNi4Mn for process gas (HDT mixture) absorption, desorption and for both short and long term storage. This material has been chosen because of its low equilibrium pressure and of its ability to retain decay helium 3 in its lattice. Aging effects on the thermodynamic behavior of LaNi4Mn have been investigated. Aging, due to formation of helium 3 in the lattice, decreases the desorption isotherm plateau pressure and shifts the phase to the higher stoichiometries. Life time of the two kinds of tritium (and isotopes) storage vessels managed in the laboratory depends on these aging changes. The Tritium Long Term Storage (namely STLT) and the hydride storage vessel (namely FSH 400) are based on LaNi4Mn even though they are not used for the same applications. STLT contains LaNi4Mn in an aluminum vessel and is designed for long term pure tritium storage. The FSH 400 is composed of LaNi4Mn included within a stainless steel container. This design is aimed at storing low tritium content mixtures (less than 3% of tritium) and for supplying processes with HDT gas. Life time of the STLT can reach 12 years. Life time of the FSH 400 varies from 1.2 years to more than 25 years depending on the application.