ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The Frisch-Peierls memorandum: A seminal document of nuclear history
The Manhattan Project is usually considered to have been initiated with Albert Einstein’s letter to President Franklin Roosevelt in October 1939. However, a lesser-known document that was just as impactful on wartime nuclear history was the so-called Frisch-Peierls memorandum. Prepared by two refugee physicists at the University of Birmingham in Britain in early 1940, this manuscript was the first technical description of nuclear weapons and their military, strategic, and ethical implications to reach high-level government officials on either side of the Atlantic. The memorandum triggered the initiation of the British wartime nuclear program, which later merged with the Manhattan Engineer District.
Masami Ohnishi, Hodaka Osawa, Kiyoshi Yoshikawa, Kai Masuda, Yasushi Yamamoto
Fusion Science and Technology | Volume 39 | Number 3 | May 2001 | Pages 1211-1216
Technical Paper | doi.org/10.13182/FST01-A175
Articles are hosted by Taylor and Francis Online.
A particle-in-cell calculation code was made to simulate the operation of an inertial electrostatic confinement (IEC) fusion device. The computation includes the effects of ionization by electron impact. Several techniques to save computational time are introduced in this program code. One of them is time-dependent fine space meshes used in the regions where the particles concentrate. Several superparticles that have similar radial position as well as similar energy are merged, while one superparticle is divided into several particles with a somewhat different velocity when the total number of superparticles decreases. The methods enable more precise determination of the characteristics of an IEC device in a shorter time than by previous methods.