ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
R. J. Buttery, T. C. Hender
Fusion Science and Technology | Volume 53 | Number 4 | May 2008 | Pages 1080-1102
Technical Paper | Special Issue on Joint European Torus (jet) | doi.org/10.13182/FST08-A1748
Articles are hosted by Taylor and Francis Online.
JET has made a strong contribution to the understanding of stability issues for the tokamak. An overview of its main achievements is presented, with emphasis on the latest progress in resolving the key issues for ITER. In particular, we conclude that control or avoidance strategies for neoclassical tearing modes (NTMs) will be necessary for good performance in ITER. JET studies have provided insights into the transport effects, seeding, underlying physics, and threshold scaling of NTMs. A range of mechanisms are found that can trigger performance-impacting NTMs with various mode numbers. Experiments have highlighted the key role of the sawtooth in triggering the NTM and have developed sawtooth control. The underlying physics suggests increased likelihood of NTM triggering as ITER scales are approached. Extensions have also been made in understanding of error field locked modes and resistive wall modes (RWMs). The predictions for ITER of error field locked mode thresholds have been developed and refined taking account of JET data. Direct inference from experimental studies and benchmarking of magnetohydrodynamic codes have both contributed to improved understanding of RWM stability in ITER. From these developments, and from the parameter space it accesses, JET continues to provide an essential role, and unique operating points, to further test and resolve the stability issues of tokamak physics.