ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Jean Jacquinot, Martin Keilhacker, Paul-Henri Rebut
Fusion Science and Technology | Volume 53 | Number 4 | May 2008 | Pages 866-890
Technical Paper | Special Issue on Joint European Torus (jet) | doi.org/10.13182/FST08-A1742
Articles are hosted by Taylor and Francis Online.
The JET design, which started in 1973, introduced bold new concepts such as D-shaped plasmas in large tokamaks, a closed-loop tritium plant, and the use of beryllium as a first-wall material. It implied increasing by two orders of magnitudes the plasma volume and the heating power compared to the standard at the time. During the JET Joint Undertaking operation from 1978 to 1999, most of these design parameters were exceeded. After achieving all of its initial objectives, JET was upgraded and modified to establish H-mode scaling and to perform comprehensive studies of divertor and advanced tokamak concepts. JET holds all records in fusion power and energy and has allowed a unique experience in D-T operation to be gained. The JET results have made a decisive contribution to the scaling laws on which the basic layout and the dimensions of ITER are based. JET today under its new EFDA-JET organization is still the most powerful fusion device operating in the world, with potential to extend its performance even further. It has the essential mission to prepare for D-T burn in ITER and to train a new generation of scientists for developing fusion as an energy source.