ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Kai Masuda, Kenji Taruya, Takahiro Koyama, Hirofumi Hashimoto, Kiyoshi Yoshikawa, Hisayuki Toku, Yasushi Yamamoto, Masami Ohnishi, Hiroshi Horiike, Nobuyuki Inoue
Fusion Science and Technology | Volume 39 | Number 3 | May 2001 | Pages 1202-1210
Technical Paper | doi.org/10.13182/FST01-A174
Articles are hosted by Taylor and Francis Online.
Performance characteristics of an inertial electrostatic confinement fusion triple-grid system are experimentally studied to provide an ample fusion reaction rate under a lower-gas-pressure region to make the operation free from glow discharge restrictions between the discharge voltage, current, and gas pressure. With a filament to provide sufficient electrons, the operating gas pressure is found to reduce down to 1/5 for the same discharge current and voltage. Although the gas pressure region that was achieved still remains the region where the fusion reaction between the ion beam and background gas is dominant, the neutron yield normalized by the gas pressure in the triple-grid system shows higher value than the conventional single-grid system.