ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
S. Krupakar Murali, John F. Santarius, Gerald L. Kulcinski
Fusion Science and Technology | Volume 53 | Number 3 | April 2008 | Pages 841-853
Technical Note | doi.org/10.13182/FST08-A1739
Articles are hosted by Taylor and Francis Online.
Recent study of fusion reactions within an inertial electrostatic confinement (IEC) device revealed several significant modes of fusion: converged core, beam-target, beam-background, and charge-exchange reactions. In an attempt to understand the fusion product proton measurements in the IEC device, the advanced fuel D-D and D-3He fusion proton energy spectra were analyzed. For D-3He fusion, the beam-target reactions were found to dominate. Hence, the present study focuses on understanding the beam-target reactions and the corresponding proton energy spectra from such sources. This information helps in accurately calculating the proton flux for optimizing medical isotope production and other near-term applications, besides calibration of the proton detectors.A proton detector was used to measure the experimental data and the Monte Carlo stopping power and range in matter (SRIM) simulation code was used to explain the corresponding experimental observations. While the D-D proton spectrum from the IEC device showed combined Doppler and scatter broadening, the D-3He proton spectrum, besides showing the broadening, also shows some interesting characteristics such as a high-energy tail and a detector thickness-dependent energy spectrum. An extended high-energy tail occurs in the observed energy spectrum from the detector because some of the protons go through the wire before being detected, which reduces their total energy. Due to the higher proton stopping power in the detector at somewhat lower energies than the initial 14.7 MeV, these protons thus deposit a larger fraction of their energy and create the high-energy tail. These measurements show that the high-energy tail of the proton energy spectrum should be excluded from the total proton counts for an accurate proton rate measurement.