ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
T. Eich, A. Werner
Fusion Science and Technology | Volume 53 | Number 3 | April 2008 | Pages 761-779
Technical Paper | doi.org/10.13182/FST08-A1733
Articles are hosted by Taylor and Francis Online.
The heat load due to plasma radiation is estimated for the plasma wall components of the stellarator Wendelstein 7-X (W7-X). A fully three-dimensional Monte Carlo code is used to simulate heating of first-wall components due to photon emission from the plasma. The plasma wall components can be described in a complex way with arbitrary shapes and orientation and flexible numerical representation. The volume radiation distribution is assumed to be described by poloidal symmetric and radially varying one-dimensional profiles aligned to the magnetic flux surfaces. A further example is given by a nonpoloidal symmetric radiation distribution following the five X point regions of the island divertor magnetic structure. Several realistic and artificial radiation profiles are chosen to investigate the local heat loads on an idealized plasma wall. The first detailed technical application of the code is the estimation of the local heat load on the Thomson scattering windows and on the inner surface of several vacuum ports of one half-module of the W7-X plasma vessel.