ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
T. Eich, A. Werner
Fusion Science and Technology | Volume 53 | Number 3 | April 2008 | Pages 761-779
Technical Paper | doi.org/10.13182/FST08-A1733
Articles are hosted by Taylor and Francis Online.
The heat load due to plasma radiation is estimated for the plasma wall components of the stellarator Wendelstein 7-X (W7-X). A fully three-dimensional Monte Carlo code is used to simulate heating of first-wall components due to photon emission from the plasma. The plasma wall components can be described in a complex way with arbitrary shapes and orientation and flexible numerical representation. The volume radiation distribution is assumed to be described by poloidal symmetric and radially varying one-dimensional profiles aligned to the magnetic flux surfaces. A further example is given by a nonpoloidal symmetric radiation distribution following the five X point regions of the island divertor magnetic structure. Several realistic and artificial radiation profiles are chosen to investigate the local heat loads on an idealized plasma wall. The first detailed technical application of the code is the estimation of the local heat load on the Thomson scattering windows and on the inner surface of several vacuum ports of one half-module of the W7-X plasma vessel.