ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
B. Schweer
Fusion Science and Technology | Volume 53 | Number 2 | February 2008 | Pages 425-432
Technical Paper | Diagnostics | doi.org/10.13182/FST08-A1728
Articles are hosted by Taylor and Francis Online.
Plasma can be studied and characterised by the analysis of its radiation. Signals obtained by passive spectroscopy contain much information about temperature, density and flux of the main species and impurities. The interpretation of measured line intensities requires the knowledge of atomic physics describing the specific radiation from the plasma. Tomographic methods are applied but they need symmetries for the calculation of local parameters. Additionally in magnetic confined plasmas the interpretation might be more difficult due to the Zeeman splitting.Asymmetries and steep gradients of plasma parameters as it appears in the plasma boundary of a tokamak or stellarator require the direct local measurement of these quantities. There are two methods to probe the plasma locally, by a laser or an atomic beam. In both cases, elastic collisions lead to scattering of light (Thomson scattering), respectively atoms (Rutherford scattering) and inelastic collisions cause the emission of light that is analysed (laser induced fluorescence, atomic beam diagnostics).In this article we will concentrate on the interaction of beam atoms with plasma, yielding to optical emission, which is observed with spectroscopic methods. After interaction with the bulk plasma the beam atoms or deuterons and impurity ions can be investigated. The first method is called beam emission spectroscopy (BES), the second charge exchange recombination spectroscopy (CXRS).Both techniques need two ports, one for the injection and a second for observation, which should be nearly perpendicular in order to get the best spatial resolution. The location of the measurement is determined by the intersection of the beam with the (perpendicular) line of sight of the detection systemThis paper is structured in four chapters. After this introduction the basic properties of atomic beam injection used for BES and CXRS are described in chapter II. The collisional- radiative model necessary for the interpretation of the measured line intensities is presented in the third part. Examples of atomic beam sources applied in tokamaks and evaluated signals are given in the last chapter.