ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
B. Schweer
Fusion Science and Technology | Volume 53 | Number 2 | February 2008 | Pages 425-432
Technical Paper | Diagnostics | doi.org/10.13182/FST08-A1728
Articles are hosted by Taylor and Francis Online.
Plasma can be studied and characterised by the analysis of its radiation. Signals obtained by passive spectroscopy contain much information about temperature, density and flux of the main species and impurities. The interpretation of measured line intensities requires the knowledge of atomic physics describing the specific radiation from the plasma. Tomographic methods are applied but they need symmetries for the calculation of local parameters. Additionally in magnetic confined plasmas the interpretation might be more difficult due to the Zeeman splitting.Asymmetries and steep gradients of plasma parameters as it appears in the plasma boundary of a tokamak or stellarator require the direct local measurement of these quantities. There are two methods to probe the plasma locally, by a laser or an atomic beam. In both cases, elastic collisions lead to scattering of light (Thomson scattering), respectively atoms (Rutherford scattering) and inelastic collisions cause the emission of light that is analysed (laser induced fluorescence, atomic beam diagnostics).In this article we will concentrate on the interaction of beam atoms with plasma, yielding to optical emission, which is observed with spectroscopic methods. After interaction with the bulk plasma the beam atoms or deuterons and impurity ions can be investigated. The first method is called beam emission spectroscopy (BES), the second charge exchange recombination spectroscopy (CXRS).Both techniques need two ports, one for the injection and a second for observation, which should be nearly perpendicular in order to get the best spatial resolution. The location of the measurement is determined by the intersection of the beam with the (perpendicular) line of sight of the detection systemThis paper is structured in four chapters. After this introduction the basic properties of atomic beam injection used for BES and CXRS are described in chapter II. The collisional- radiative model necessary for the interpretation of the measured line intensities is presented in the third part. Examples of atomic beam sources applied in tokamaks and evaluated signals are given in the last chapter.