ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
B. Weyssow
Fusion Science and Technology | Volume 53 | Number 2 | February 2008 | Pages 307-313
Technical Paper | Transport Theory | doi.org/10.13182/FST08-A1716
Articles are hosted by Taylor and Francis Online.
An ideal plasma of electrons and a single species of ions in the low collisionality limit subject to an almost straight magnetic field is considered. In such conditions, the linear theory of transport determines the 3 × 1 matrix of dissipative fluxes [hat]Jr namely, the electric current, the electronic heat flux and the ionic heat flux, in terms of a 3 × 1 matrix of thermodynamic forces [hat]X combining the electric field with the gradients of the densities and of the temperatures. The classical transport coefficients are the components of the 3 × 3 matrix of tensors [hat]Lrs of the linear flux-force relations [hat]Jr = [summation]s=19 [hat]Lrs[hat]X. The theory is developed in the framework of the statistical mechanics of charged particles starting from the Landau kinetic equation.