ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Jochen Linke
Fusion Science and Technology | Volume 53 | Number 2 | February 2008 | Pages 278-287
Technical Paper | Edge Physics and Plasma-Wall Interactions | doi.org/10.13182/FST08-A1713
Articles are hosted by Taylor and Francis Online.
The first wall and the divertor in present-day or next step thermonuclear fusion devices are exposed to intense fluxes of charged and neutral particles, in addition the plasma facing materials and components are subjected to radiation in a wide spectral range. These processes, in general referred to as 'plasma wall interaction' will have strong influence on the plasma performance, and moreover, they have major impact on the degradation and on the lifetime of the plasma facing armour and the joining interface between the plasma facing material and the heat sink. Beside physical and chemical sputtering processes, thermal fatigue damage due to cyclic heat fluxes during normal operation and intense thermal shocks caused by severe thermal transients are of serious concern for the engineers which develop reliable wall components. In addition, the material and component degradation due to high fluxes of energetic neutrons is another critical issue in D-T-burning fusion devices which requires further extensive research activities. This paper represents a tutorial focussed on the development and characterization of plasma facing components for thermonuclear fusion devices.