ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Kunihito Yamauchi, Kazuki Ogasawara, Masato Watanabe, Akitoshi Okino, Yoshitaka Sunaga, Eiki Hotta
Fusion Science and Technology | Volume 39 | Number 3 | May 2001 | Pages 1182-1187
Technical Paper | doi.org/10.13182/FST01-A171
Articles are hosted by Taylor and Francis Online.
Experimental results of spherical glow discharge for a portable neutron source are presented. An experimental device consisting of a 45-cm-diam, 31-cm-high stainless steel cylindrical chamber was constructed in which a spherical mesh-type 30-cm-diam anode was installed. A spherical grid cathode made of 1.2-mm-diam stainless steel wire was made into a 7-cm-diam open spherical grid. The system was maintained at a constant pressure of 1 to 15 mTorr by feeding hydrogen or deuterium gas. The visible and ultraviolet emissions from the device were measured using the spectroscopic method. Strong emission lines of hydrogen were observed, and all hydrogen lines were broadened, remarkably, by Doppler and/or Stark effects. From these data, beam ion velocity, electron density and temperature of the core plasma were estimated. Using deuterium gas, a steady-state neutron production rate of 104 s-1 was observed at a discharge of 40 kV, 2 mA. In the low-current region of several milliamperes, the neutron production rate was proportional to the discharge current to the power from ~1.1 to 1.4. The beam-background reactions were dominant in the measured range of voltage and current.