ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
R.-D. Penzhorn, Y. Hatano, M. Matsuyama, Y. Torikai
Fusion Science and Technology | Volume 64 | Number 1 | July 2013 | Pages 45-53
Technical Paper | doi.org/10.13182/FST12-625
Articles are hosted by Taylor and Francis Online.
Stainless steel exposed to gaseous tritium characteristically shows a firmly trapped fraction of tritium in the surface layer, which is not fully removable by water at ambient temperature. Prolonged thermal treatment of tritium-loaded specimens at <443 K causes substantial depletion of the bulk but almost no depletion of the surface layer. For complete removal of hydrogen isotopes from the bulk and the surface, temperatures exceeding 573 K are necessary. Upon chemical etching virtually all tritium trapped in the surface layer appears in the etching solution as tritiated water. Following removal of the layer by chemical etching, the tritium-rich layer reappears after months of aging at ambient temperature with nearly the original tritium activity. Comparison of chronic tritium release rates into liquid water before and after etching reveals that the surface layer only marginally influences the rate. X-ray photoelectron spectroscopy provides evidence that during prolonged aging the surface layer continues to grow while at the same time trapping a fraction of bulk tritium released at ambient temperature. Experimental results suggest different mechanisms of hydrogen uptake and release by the bulk and surface layers. Inference of tritium activity in the bulk of aged or heat-exposed stainless steel material from surface activity measurements may depart significantly from reality.