ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
G. L. Jackson, V. S. Chan, R. D. Stambaugh
Fusion Science and Technology | Volume 64 | Number 1 | July 2013 | Pages 8-12
Technical Paper | doi.org/10.13182/FST13-A17042
Articles are hosted by Taylor and Francis Online.
The tritium burnup fraction fburnup can strongly affect the design of a fusion reactor since it influences the size of the tritium reprocessing plant, the on-site tritium inventory, and hence, the licensing requirements and cost of the entire plant. In this paper a simple analytic expression for fburnup is derived and then applied to typical parameters proposed for three possible fusion devices: ARIES-AT, FDF, and ITER. We find that for these parameters the burnup fraction is most strongly affected by the global recycling coefficient (through the global replacement time) and the fueling efficiency. The latter term may be the most easily influenced by plant design, such as by high-field-side pellet injection, for example. Because of the hotter edge plasmas in these devices compared to present-day tokamaks, the recycling coefficient will be lower, reducing the tritium burnup fraction. While this may not adversely affect ITER, which is limited to 400-s pulses for the inductive scenario, the tritium reprocessing for nearly continuous operation of devices such as ARIES-AT must be carefully considered in the overall plant design.