ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
G. L. Jackson, V. S. Chan, R. D. Stambaugh
Fusion Science and Technology | Volume 64 | Number 1 | July 2013 | Pages 8-12
Technical Paper | doi.org/10.13182/FST13-A17042
Articles are hosted by Taylor and Francis Online.
The tritium burnup fraction fburnup can strongly affect the design of a fusion reactor since it influences the size of the tritium reprocessing plant, the on-site tritium inventory, and hence, the licensing requirements and cost of the entire plant. In this paper a simple analytic expression for fburnup is derived and then applied to typical parameters proposed for three possible fusion devices: ARIES-AT, FDF, and ITER. We find that for these parameters the burnup fraction is most strongly affected by the global recycling coefficient (through the global replacement time) and the fueling efficiency. The latter term may be the most easily influenced by plant design, such as by high-field-side pellet injection, for example. Because of the hotter edge plasmas in these devices compared to present-day tokamaks, the recycling coefficient will be lower, reducing the tritium burnup fraction. While this may not adversely affect ITER, which is limited to 400-s pulses for the inductive scenario, the tritium reprocessing for nearly continuous operation of devices such as ARIES-AT must be carefully considered in the overall plant design.