ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Discovering, Making, and Testing New Materials: SRNL’s Center For Hierarchical Waste Form Materials
Savannah River National Laboratory researchers are building on the laboratory’s legacy of using cutting-edge science to effectively immobilize nuclear waste in innovative ways. As part of the Center for Hierarchical Waste Form Materials, SRNL is leveraging its depth of experience in radiological waste management to explore new frontiers in the industry.
R. Keppens
Fusion Science and Technology | Volume 53 | Number 2 | February 2008 | Pages 135-143
Technical Paper | Equilibrium and Instabilities | doi.org/10.13182/FST08-A1699
Articles are hosted by Taylor and Francis Online.
The ideal MagnetoHydroDynamic (MHD) equations accurately describe the macroscopic dynamics of a perfectly conducting plasma. Adopting a continuum, single fluid description in terms of the plasma density , velocity v, thermal pressure p and magnetic field B, the ideal MHD system expresses conservation of mass, momentum, energy, and magnetic flux. This nonlinear, conservative system of 8 partial differential equations enriches the Euler equations governing the dynamics of a compressible gas with the dynamical influence - through the Lorentz force - and evolution - through the additional induction equation - of the magnetic field B. In multi-dimensional problems, the topological constraint expressed by the Maxwell equation B = 0, represents an additional complication for numerical MHD. Basic concepts of shock-capturing high-resolution schemes for computational MHD are presented, with an emphasis on how they cope with the thight physical demands resulting from nonlinearity, compressibility, conservation, and solenoidality.