ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
R. Keppens
Fusion Science and Technology | Volume 53 | Number 2 | February 2008 | Pages 135-143
Technical Paper | Equilibrium and Instabilities | doi.org/10.13182/FST08-A1699
Articles are hosted by Taylor and Francis Online.
The ideal MagnetoHydroDynamic (MHD) equations accurately describe the macroscopic dynamics of a perfectly conducting plasma. Adopting a continuum, single fluid description in terms of the plasma density , velocity v, thermal pressure p and magnetic field B, the ideal MHD system expresses conservation of mass, momentum, energy, and magnetic flux. This nonlinear, conservative system of 8 partial differential equations enriches the Euler equations governing the dynamics of a compressible gas with the dynamical influence - through the Lorentz force - and evolution - through the additional induction equation - of the magnetic field B. In multi-dimensional problems, the topological constraint expressed by the Maxwell equation B = 0, represents an additional complication for numerical MHD. Basic concepts of shock-capturing high-resolution schemes for computational MHD are presented, with an emphasis on how they cope with the thight physical demands resulting from nonlinearity, compressibility, conservation, and solenoidality.