ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Texas-based WCS chosen to manage U.S.-generated mercury
A five-year, $17.8 million contract has been awarded to Waste Control Specialists for the long-term management and storage of elemental mercury, the Department of Energy’s Office of Environmental Management announced on November 21.
S. Tanaka, T. Iijima, A. Tonegawa, K. Kawamura, K. N. Sato
Fusion Science and Technology | Volume 63 | Number 1 | May 2013 | Pages 420-422
doi.org/10.13182/FST13-A16974
Articles are hosted by Taylor and Francis Online.
Experimental simulation of a V-shaped target for a gas divertor via detached plasma formation is presented using a linear divertor plasma simulator, TPD-Sheet IV. Three geometries of the opposite plate on the V-shaped target were investigated with variation of the contact gas flow rate. The ionization and recombination events are discussed for each target configuration using the collisional-radiative (CR) model. The results expect that a gas divertor with a V-shaped target effectively enhances plasma recycling and detachment.