ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Texas-based WCS chosen to manage U.S.-generated mercury
A five-year, $17.8 million contract has been awarded to Waste Control Specialists for the long-term management and storage of elemental mercury, the Department of Energy’s Office of Environmental Management announced on November 21.
H. Takahashi, A. Okamoto, Y. Kawamura, T. Kumagai, A. Daibo, S. Kitajima
Fusion Science and Technology | Volume 63 | Number 1 | May 2013 | Pages 404-407
doi.org/10.13182/FST13-A16969
Articles are hosted by Taylor and Francis Online.
Keeping compatibility between steady state gas puffing and stable radio frequency (RF) discharge, helium recombining plasma production was achieved in an RF plasma device. In this experiment, axial position of orifice, which suppresses backflow of secondary gas, was modified to increase electron density at a test region. Changing neutral pressure at the test region from 11 Pa to 21 Pa, the electron temperature, the electron density and the wavelength spectrum were measured. The electron temperature decreased with increasing neutral pressure and finally becomes about 3 eV. The electron density shows similar pressure dependence as the electron temperature. When the neutral pressure increases to 15 Pa, the line spectra from highly excited helium atoms were clearly observed. The electron temperature estimated from these line spectral intensities is about 0.05 eV, which indicates that the electron density reduction is caused by volumetric recombination occurring at the periphery of the plasma column.