ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Texas-based WCS chosen to manage U.S.-generated mercury
A five-year, $17.8 million contract has been awarded to Waste Control Specialists for the long-term management and storage of elemental mercury, the Department of Energy’s Office of Environmental Management announced on November 21.
Kazunori Takahashi, Daiki Sato
Fusion Science and Technology | Volume 63 | Number 1 | May 2013 | Pages 395-397
doi.org/10.13182/FST13-A16966
Articles are hosted by Taylor and Francis Online.
High density helicon plasma is produced by a 13.56 MHz rf discharge under an IGBT-pulsed expanding and strong magnetic field, where the compact solenoid (inner diameter of 10 cm and 616 turn) is used for the formation of the magnetic field. The solenoid current is pulsed by the IGBT device with a pulse width of 20-40 msec. The solenoid current and the resultant magnetic field strength are proportional to the charging voltage to the capacitor. In the presently used solenoid and circuit, the maximum current and the resultant field strength are about 56 A and 3 kGauss, respectively. For the rf power of about 700 W, the high density plasma of about 4 × 1012 cm-3 is achieved. Above the field strength of about 1.6 kGauss, the source plasma density is constant, while the downstream density increases due to the suppression of the radial loss of the plasma particles.