ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Fermilab center renamed after late particle physicist Helen Edwards
Fermi National Accelerator Laboratory’s Integrated Engineering Research Center, which officially opened in January 2024, is now known as the Helen Edwards Engineering Center. The name was changed to honor the late particle physicist who led the design, construction, commissioning, and operation of the lab’s Tevatron accelerator and was part of the Water Resources Development Act signed by President Biden in December 2024, according to a Fermilab press release.
T. Urano, T. Watanabe, T. Mitsui, T. Takahashi
Fusion Science and Technology | Volume 63 | Number 1 | May 2013 | Pages 383-385
doi.org/10.13182/FST13-A16962
Articles are hosted by Taylor and Francis Online.
In order to generate a toroidal field in field-reversed configuration (FRC) plasma, a poloidal current drive by axial neutral beam injection (NBI) is investigated analytically and numerically. Species of neutral beam particle are hydrogen and helium. Feasibility for two types of injection geometry, injection along the geometric axis and to near the separatrix, is tested. Since all beam ions are lost directly through the device end, more than 12-kA beam current is needed to improve electron confinement near the separatrix. On the other hand, it is found that low energy (about 200 eV) beam ions can be confined for injection to near the separatrix. Present calculation of the beam ion orbit shows possibility of poloidal current drive and toroidal field generation by axial NBI into an FRC plasma.