ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Disa seeks NRC license for its uranium mine waste remediation tech
The Nuclear Regulatory Commission has received a license application from Disa Technologies to use high-pressure slurry ablation (HPSA) technology for remediating abandoned uranium mine waste at inactive mining sites. Disa’s headquartersin are Casper, Wyo.
Y. Hamaji et al.
Fusion Science and Technology | Volume 63 | Number 1 | May 2013 | Pages 371-373
doi.org/10.13182/FST13-A16958
Articles are hosted by Taylor and Francis Online.
The structure of deposited carbon layers formed under various conditions ranging from small scale laboratory to large scale magnetic confinement devices was characterized using Raman spectroscopy. By comparing ion beam and TEXTOR experiments, the deposition temperature is found to be the dominant factor in three dimensional disorder of sp2 sites and sp3 ratio at T>493 K. While, no clear temperature dependence on properties of aromatic rings was observed, indicating other parameters responsible for the aromatic rings present in carbon deposition layers. The carbon layers from JET differed significantly, indicating influence of Be compound formation on Raman parameters.