ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Texas-based WCS chosen to manage U.S.-generated mercury
A five-year, $17.8 million contract has been awarded to Waste Control Specialists for the long-term management and storage of elemental mercury, the Department of Energy’s Office of Environmental Management announced on November 21.
T. Numakura et al.
Fusion Science and Technology | Volume 63 | Number 1 | May 2013 | Pages 295-297
doi.org/10.13182/FST13-A16933
Articles are hosted by Taylor and Francis Online.
The computational code for designing the resonant cavity of a gyrotron has been developed to design new gyrotrons for the future GAMMA 10(PDX). The developed code calculates the cavity RF profile function by simultaneously solving a set of relativistic single-particle equations of motion and wave equations to obtain a self-consistent solution in the dynamic system that accounts for the effects of the electron beam on the cavity field profile. Beam-wave interactions mainly occur in the uniform middle section of the resonator. The calculation results explain well experimental data of the gyrotron used in GAMMA 10 ECH system.