ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Disa seeks NRC license for its uranium mine waste remediation tech
The Nuclear Regulatory Commission has received a license application from Disa Technologies to use high-pressure slurry ablation (HPSA) technology for remediating abandoned uranium mine waste at inactive mining sites. Disa’s headquartersin are Casper, Wyo.
T. Numakura et al.
Fusion Science and Technology | Volume 63 | Number 1 | May 2013 | Pages 295-297
doi.org/10.13182/FST13-A16933
Articles are hosted by Taylor and Francis Online.
The computational code for designing the resonant cavity of a gyrotron has been developed to design new gyrotrons for the future GAMMA 10(PDX). The developed code calculates the cavity RF profile function by simultaneously solving a set of relativistic single-particle equations of motion and wave equations to obtain a self-consistent solution in the dynamic system that accounts for the effects of the electron beam on the cavity field profile. Beam-wave interactions mainly occur in the uniform middle section of the resonator. The calculation results explain well experimental data of the gyrotron used in GAMMA 10 ECH system.