ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
H. T. Lee, Y. Ohtsuka, Y. Ueda, K. Sugiyama, E. Markina, N. Yoshida
Fusion Science and Technology | Volume 63 | Number 1 | May 2013 | Pages 233-236
doi.org/10.13182/FST13-A16913
Articles are hosted by Taylor and Francis Online.
The structure and concentration distribution of He, H, and D in the ion implanted zone following simultaneous He-D irradiation in W was characterized. A shift in He bubble size from nanometer to tens of nanometers was observed between 800 K < T < 1000 K. The bubble field was found to extend to depths of 30-40 nm with mean concentrations of 4-5 at.%.. An order of magnitude increase in He trapping was observed at 800 K when the ion energy was increased from 0.3 to 1.0 keV. Depth profiles of the trapped D at 500 K indicatea marked decrease in the trapped amount coinciding with the He bubble layer. Conversely, enrichment in hydrogen concentration was observed. One hydrogen atom was found to trap in ratio with ~6 He atoms. Such preferential trapping of hydrogen appears to be an important process in the reduction of D diffusion into W due to He effects.