ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Disa seeks NRC license for its uranium mine waste remediation tech
The Nuclear Regulatory Commission has received a license application from Disa Technologies to use high-pressure slurry ablation (HPSA) technology for remediating abandoned uranium mine waste at inactive mining sites. Disa’s headquartersin are Casper, Wyo.
H. T. Lee, Y. Ohtsuka, Y. Ueda, K. Sugiyama, E. Markina, N. Yoshida
Fusion Science and Technology | Volume 63 | Number 1 | May 2013 | Pages 233-236
doi.org/10.13182/FST13-A16913
Articles are hosted by Taylor and Francis Online.
The structure and concentration distribution of He, H, and D in the ion implanted zone following simultaneous He-D irradiation in W was characterized. A shift in He bubble size from nanometer to tens of nanometers was observed between 800 K < T < 1000 K. The bubble field was found to extend to depths of 30-40 nm with mean concentrations of 4-5 at.%.. An order of magnitude increase in He trapping was observed at 800 K when the ion energy was increased from 0.3 to 1.0 keV. Depth profiles of the trapped D at 500 K indicatea marked decrease in the trapped amount coinciding with the He bubble layer. Conversely, enrichment in hydrogen concentration was observed. One hydrogen atom was found to trap in ratio with ~6 He atoms. Such preferential trapping of hydrogen appears to be an important process in the reduction of D diffusion into W due to He effects.