ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Texas-based WCS chosen to manage U.S.-generated mercury
A five-year, $17.8 million contract has been awarded to Waste Control Specialists for the long-term management and storage of elemental mercury, the Department of Energy’s Office of Environmental Management announced on November 21.
K. Ichimura et al.
Fusion Science and Technology | Volume 63 | Number 1 | May 2013 | Pages 209-212
doi.org/10.13182/FST13-A16907
Articles are hosted by Taylor and Francis Online.
This paper reports the recent results of measurements on the effect of plasma heating on enhancement of the ion flux in GAMMA 10. Recently, by using its end-loss flux, a study of the divertor simulation experiment has been started in the tandem mirror GAMMA 10. From its large size and unique characteristics, we can expect that unique divertor simulation experiments, which could not be held in other simple, linear divertor simulation machines, can be performed in GAMMA 10. In the experiment, it was found that high ion temperature of the end-loss ion flux was already achieved. In addition, ion cyclotron range of frequency (ICRF) heating in the anchor region was found to be very effective to increase the end-loss ion flux, which supports the huge potential of GAMMA 10 for the divertor simulation experiment.