ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
M. Reinhart et al.
Fusion Science and Technology | Volume 63 | Number 1 | May 2013 | Pages 201-204
doi.org/10.13182/FST13-A16905
Articles are hosted by Taylor and Francis Online.
In this work we investigate the applicability of several optical emission spectroscopy methods to measure the electron density and temperature in deuterium plasma in the linear plasma generator PSI-2. The spectroscopy measurements are realized by an imaging spectrometer which delivers radial profiles of the emission lines. With the application of an inverse Abel transformation, spatially resolved measurements are obtained.The spectroscopy methods divide into two groups: The measurement of ne by Balmer line ratios and by the rotational temperature of molecules is only suitable for ionizing plasmas; the measurement of ne by the Stark broadening of Paschen lines and of Te by Paschen line ratios is only applicable for recombining plasmas.For the evaluation of these methods, different plasma conditions are produced in PSI-2. The plasma generator is capable of producing deuterium plasmas with electron densities of up to 1013 cm-3 and electron temperatures of up to 20 eV. Additional measurements with a Langmuir double probe are conducted for comparison with the spectroscopy measurements.A collisional-radiative model in the Yacora code is used to compare measured Balmer line emissions with the calculation and to investigate which reaction channels influence the recombination in PSI-2.