ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
M. Reinhart et al.
Fusion Science and Technology | Volume 63 | Number 1 | May 2013 | Pages 201-204
doi.org/10.13182/FST13-A16905
Articles are hosted by Taylor and Francis Online.
In this work we investigate the applicability of several optical emission spectroscopy methods to measure the electron density and temperature in deuterium plasma in the linear plasma generator PSI-2. The spectroscopy measurements are realized by an imaging spectrometer which delivers radial profiles of the emission lines. With the application of an inverse Abel transformation, spatially resolved measurements are obtained.The spectroscopy methods divide into two groups: The measurement of ne by Balmer line ratios and by the rotational temperature of molecules is only suitable for ionizing plasmas; the measurement of ne by the Stark broadening of Paschen lines and of Te by Paschen line ratios is only applicable for recombining plasmas.For the evaluation of these methods, different plasma conditions are produced in PSI-2. The plasma generator is capable of producing deuterium plasmas with electron densities of up to 1013 cm-3 and electron temperatures of up to 20 eV. Additional measurements with a Langmuir double probe are conducted for comparison with the spectroscopy measurements.A collisional-radiative model in the Yacora code is used to compare measured Balmer line emissions with the calculation and to investigate which reaction channels influence the recombination in PSI-2.