ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
M. Sakamoto et al.
Fusion Science and Technology | Volume 63 | Number 1 | May 2013 | Pages 188-192
doi.org/10.13182/FST13-A16902
Articles are hosted by Taylor and Francis Online.
The divertor simulation experimental module (Dmodule) has been installed in the west end region in GAMMA 10/PDX. By use of Langmuir probes and spectroscopic measurement of intensity ratios of He I lines, temporal evolution of electron temperature and that of electron density of the plasma in the D-module with the V-shaped tungsten target are obtained. When the additional ICRF heating is applied to the anchor cell, the electron temperature evaluated with He I intensity ratios decreases from ~60 eV to ~25 eV and that from the probe measurement decreases from ~27 eV to ~14 eV. The difference between both measurements seems to be attributed to the difference of their measurement positions. The electron density measured by the Langmuir probe increases 2.3 times due to the RF3 power but it is rather low (< 1017 m-3). The electron density at the end region is expected to be increased by enhancement of ICRF heating and additional gas puffing at the plug/barrier cell which is the upstream cell of the end region.