ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
State legislation: Colorado redefines nuclear as “clean energy resource”
Colorado Gov. Jared Polis signed a bill into law on Monday that adds nuclear to the state’s clean energy portfolio—making nuclear power eligible for new sources of project financing at the state, county, and city levels.
H. Gota et al.
Fusion Science and Technology | Volume 63 | Number 1 | May 2013 | Pages 139-142
doi.org/10.13182/FST13-A16890
Articles are hosted by Taylor and Francis Online.
A high temperature, stable, long-lived field-reversed configuration (FRC) plasma state has been produced in the C-2 device by dynamically colliding and merging two oppositely directed compact toroids, with combining effects of biasing edge plasma near the FRC separatrix from an end-plasma-gun with magnetic-mirror-plugs and of neutral-beam (NB) injection. The plasma-gun creates an inward radial electric field which mitigates the n = 2 rotational instability. The gun also produces E×B velocity shear in the FRC edge layer, which may explain observations of improved transport properties. The FRCs are nearly axisymmetric which enables fast ion confinement, and increasing NB power input clearly extends the FRC lifetime. The combined effects of the plasma-gun with mirror-plugs and of NB injection yield a new High Performance FRC regime with confinement times improved by factors 2 to 4 and FRC lifetimes extended from 1 to 3 ms.