ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Texas-based WCS chosen to manage U.S.-generated mercury
A five-year, $17.8 million contract has been awarded to Waste Control Specialists for the long-term management and storage of elemental mercury, the Department of Energy’s Office of Environmental Management announced on November 21.
V. E. Moiseenko, O. Ågren
Fusion Science and Technology | Volume 63 | Number 1 | May 2013 | Pages 119-122
doi.org/10.13182/FST13-A16885
Articles are hosted by Taylor and Francis Online.
A stellarator-mirror fusion-fission hybrid has recently been proposed. Neutral beam injection (NBI) is here studied numerically for this hybrid using a two-dimensional kinetic code, KNBIM. The code accounts for Coulomb collisions between the hot ions and the background plasma. The geometry of the confining magnetic field is arbitrary for the code and is accounted for via a numerical bounce averaging procedure. Along with the kinetic calculations the neutron production intensity is computed.The calculated hot ion distribution function from NBI is used in power balance estimates for the whole system. The requirement that the fast neutrals should be efficiently captured in the plasma is imposed to restrict the range of plasma parameters. The results obtained balance calculations are close to results obtained previously with a bi-Maxwellian ion distribution function. The calculated parameters for a power producing stellarator mirror device and within modern top technical capabilities. The parameters of plasma and NBI characteristics seem also attainable. The calculated fusion Q is within a range with potential for energy production in a hybrid reactor.