ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
M. Ichimura et al.
Fusion Science and Technology | Volume 63 | Number 1 | May 2013 | Pages 115-118
doi.org/10.13182/FST13-A16884
Articles are hosted by Taylor and Francis Online.
In GAMMA 10, a divertor simulation study has been started with open magnetic field configuration in the end region. High heat and particle fluxes are required along the magnetic field line to the end region. Plasmas with high ion-temperature of several keV and strong temperature anisotropy of more than 10 have been produced by using ion-cyclotron range of frequency (ICRF) heating in the central cell. Direct anchor heating experiments with new anchor antennas have been performed and the enhancement of the MHD stabilization has been observed. High energy ions whose energy is more than 50 keV have been observed in the end-loss ions. The axial transport of high-energy ions due to loss processes other than the classical Coulomb scattering has been discussed. Alfvén-ion-cyclotron (AIC) waves are spontaneously excited owing to such the strong temperature anisotropy and considerable energy transport along the magnetic field line due to the AIC waves is expected. In this review, recent ICRF heating experiments for the divertor simulation study are described.