ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Seconds Matter: Rethinking Nuclear Facility Security for the Modern Threat Landscape
In today’s rapidly evolving threat environment, nuclear facilities must prioritize speed and precision in their security responses—because in critical moments, every second counts. An early warning system serves as a vital layer of defense, enabling real-time detection of potential intrusions or anomalies before they escalate into full-blown incidents. By providing immediate alerts and actionable intelligence, these systems empower security personnel to respond decisively, minimizing risk to infrastructure, personnel, and the public. The ability to anticipate and intercept threats at the earliest possible stage not only enhances operational resilience but also reinforces public trust in the safety of nuclear operations. Investing in such proactive technologies is no longer optional—it’s essential for modern nuclear security.
M. Ichimura et al.
Fusion Science and Technology | Volume 63 | Number 1 | May 2013 | Pages 115-118
doi.org/10.13182/FST13-A16884
Articles are hosted by Taylor and Francis Online.
In GAMMA 10, a divertor simulation study has been started with open magnetic field configuration in the end region. High heat and particle fluxes are required along the magnetic field line to the end region. Plasmas with high ion-temperature of several keV and strong temperature anisotropy of more than 10 have been produced by using ion-cyclotron range of frequency (ICRF) heating in the central cell. Direct anchor heating experiments with new anchor antennas have been performed and the enhancement of the MHD stabilization has been observed. High energy ions whose energy is more than 50 keV have been observed in the end-loss ions. The axial transport of high-energy ions due to loss processes other than the classical Coulomb scattering has been discussed. Alfvén-ion-cyclotron (AIC) waves are spontaneously excited owing to such the strong temperature anisotropy and considerable energy transport along the magnetic field line due to the AIC waves is expected. In this review, recent ICRF heating experiments for the divertor simulation study are described.