ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Y. Nakashima et al.
Fusion Science and Technology | Volume 63 | Number 1 | May 2013 | Pages 100-105
doi.org/10.13182/FST13-A16881
Articles are hosted by Taylor and Francis Online.
In the new research plan of Plasma Research Center of the University of Tsukuba, a high heat-flux divertor simulator (E-Divertor) was proposed by using an end-mirror exit of a large tandem mirror GAMMA 10/PDX device. Experiments for characterization of end-loss plasma flux have been extensively performed at the end-mirror region of GAMMA 10/PDX and detailed behavior of end-loss particles has been investigated. In standard hot-ion mode plasmas (ne0 ~ 21018 m-3, Ti0 ~ 5 keV), the energy analysis of ion flux was performed by using end-loss ion energy analyzer (ELIEA). It was found that the high ion temperature (100 - 400 eV) is generated and has a liner relationship between diamagnetism in the central-cell. The ion temperature determined from the probe and calorimetric measurements gives a good agreement with the ELIEA measurement. Additional ICRF heating in the anchor-cell showed a significant increase of particle flux, which indicated an effectiveness of additional plasma heating in adjacent cells. Superimposing the ECH pulse of 380 kW, 5 ms induces a remarkable enhancement of heat flux and a peak value in the net heat-flux density more than 10 MW/m2 was attained during the ECH injection, which comes up to the heat-load level of the divertor plate of ITER. Recently a large-scale divertor simulation experimental module (D-module) was installed in the west end-cell and the first plasma irradiation experiments onto a new tungsten V-shaped target were successfully performed. A number of interesting results such as neutral compression, enhancement of recycling and impurity radiation during noble gas injection, have been observed.