ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Texas-based WCS chosen to manage U.S.-generated mercury
A five-year, $17.8 million contract has been awarded to Waste Control Specialists for the long-term management and storage of elemental mercury, the Department of Energy’s Office of Environmental Management announced on November 21.
Y. Nakashima et al.
Fusion Science and Technology | Volume 63 | Number 1 | May 2013 | Pages 100-105
doi.org/10.13182/FST13-A16881
Articles are hosted by Taylor and Francis Online.
In the new research plan of Plasma Research Center of the University of Tsukuba, a high heat-flux divertor simulator (E-Divertor) was proposed by using an end-mirror exit of a large tandem mirror GAMMA 10/PDX device. Experiments for characterization of end-loss plasma flux have been extensively performed at the end-mirror region of GAMMA 10/PDX and detailed behavior of end-loss particles has been investigated. In standard hot-ion mode plasmas (ne0 ~ 21018 m-3, Ti0 ~ 5 keV), the energy analysis of ion flux was performed by using end-loss ion energy analyzer (ELIEA). It was found that the high ion temperature (100 - 400 eV) is generated and has a liner relationship between diamagnetism in the central-cell. The ion temperature determined from the probe and calorimetric measurements gives a good agreement with the ELIEA measurement. Additional ICRF heating in the anchor-cell showed a significant increase of particle flux, which indicated an effectiveness of additional plasma heating in adjacent cells. Superimposing the ECH pulse of 380 kW, 5 ms induces a remarkable enhancement of heat flux and a peak value in the net heat-flux density more than 10 MW/m2 was attained during the ECH injection, which comes up to the heat-load level of the divertor plate of ITER. Recently a large-scale divertor simulation experimental module (D-module) was installed in the west end-cell and the first plasma irradiation experiments onto a new tungsten V-shaped target were successfully performed. A number of interesting results such as neutral compression, enhancement of recycling and impurity radiation during noble gas injection, have been observed.