ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
Y. Nakashima et al.
Fusion Science and Technology | Volume 63 | Number 1 | May 2013 | Pages 100-105
doi.org/10.13182/FST13-A16881
Articles are hosted by Taylor and Francis Online.
In the new research plan of Plasma Research Center of the University of Tsukuba, a high heat-flux divertor simulator (E-Divertor) was proposed by using an end-mirror exit of a large tandem mirror GAMMA 10/PDX device. Experiments for characterization of end-loss plasma flux have been extensively performed at the end-mirror region of GAMMA 10/PDX and detailed behavior of end-loss particles has been investigated. In standard hot-ion mode plasmas (ne0 ~ 21018 m-3, Ti0 ~ 5 keV), the energy analysis of ion flux was performed by using end-loss ion energy analyzer (ELIEA). It was found that the high ion temperature (100 - 400 eV) is generated and has a liner relationship between diamagnetism in the central-cell. The ion temperature determined from the probe and calorimetric measurements gives a good agreement with the ELIEA measurement. Additional ICRF heating in the anchor-cell showed a significant increase of particle flux, which indicated an effectiveness of additional plasma heating in adjacent cells. Superimposing the ECH pulse of 380 kW, 5 ms induces a remarkable enhancement of heat flux and a peak value in the net heat-flux density more than 10 MW/m2 was attained during the ECH injection, which comes up to the heat-load level of the divertor plate of ITER. Recently a large-scale divertor simulation experimental module (D-module) was installed in the west end-cell and the first plasma irradiation experiments onto a new tungsten V-shaped target were successfully performed. A number of interesting results such as neutral compression, enhancement of recycling and impurity radiation during noble gas injection, have been observed.