ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Fermilab center renamed after late particle physicist Helen Edwards
Fermi National Accelerator Laboratory’s Integrated Engineering Research Center, which officially opened in January 2024, is now known as the Helen Edwards Engineering Center. The name was changed to honor the late particle physicist who led the design, construction, commissioning, and operation of the lab’s Tevatron accelerator and was part of the Water Resources Development Act signed by President Biden in December 2024, according to a Fermilab press release.
A. V. Arzhannikov et al.
Fusion Science and Technology | Volume 63 | Number 1 | May 2013 | Pages 82-87
doi.org/10.13182/FST13-A16878
Articles are hosted by Taylor and Francis Online.
Sub-mm radiation can be generated by conversion of plasma waves into electromagnetic (EM) radiation at strong Langmuir turbulence (LT) via the two-stream instability induced by a high current relativistic electron beam (REB). A plasmon scattering on plasma density fluctuations produces EM emission at the plasma frequency p (“p process”). Nonlinear plasmon-plasmon merging results in the generation of photons nearby the 2nd harmonic of the plasma frequency 2p (2p process”). For plasma densities 1020-1021 m-3, these frequencies are in the range of sub-mm waves: 180-566 GHz. The power density of sub-mm-wave emission from plasmas in the multi-mirror trap GOL-3 (BINP) during injection of a 10-s-REB at plasma densities ne [approximately equal] (1-5)1020 m-3, electron temperatures Te [approximately equal] 1-3 keV and magnetic field B [approximately equal] 4 T was measured to be up to 1 kW/cm3 in the frequency band above 100 GHz.To calculate the second harmonic emission power from turbulent magnetized plasma we use the model of coalescence of two upper-hybrid waves. Results of these calculations and measured power are in good coincidence in the investigated area of plasma density.