ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Texas-based WCS chosen to manage U.S.-generated mercury
A five-year, $17.8 million contract has been awarded to Waste Control Specialists for the long-term management and storage of elemental mercury, the Department of Energy’s Office of Environmental Management announced on November 21.
T. Takizuka, N. Oyama, T. Fukuda
Fusion Science and Technology | Volume 63 | Number 1 | May 2013 | Pages 64-69
doi.org/10.13182/FST13-A16875
Articles are hosted by Taylor and Francis Online.
Edge localized mode (ELM) must be eliminated which enhances the erosion of divertor plates in the Hmode operation of tokamak reactors. Suppression of ELM has been experimentally achieved by the resonant magnetic perturbation (RMP) with multipartite coils. In a DEMO reactor with strong neutron flux, however, it is desired the coils near the first wall not to be put in. We propose an innovative concept of the RMP for tokamak DEMO reactors without installing coils but inserting ferritic steels of the helical configuration. Helically perturbed magnetic field is naturally formed in the axisymmetric toroidal magnetic field through the helical ferritic steel inserts (FSIs). The perturbation amplitude in the plasma pedestal region can easily be set above several 10-4 of the toroidal field strength in the DEMO reactor condition, which is enough for the RMP to mitigate/suppress ELMs.