ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
G. Vayakis, E. R. Hodgson, V. Voitsenya, C. I. Walker
Fusion Science and Technology | Volume 53 | Number 2 | February 2008 | Pages 699-750
Technical Paper | Plasma Diagnostics for Magnetic Fusion Research | doi.org/10.13182/FST08-A1684
Articles are hosted by Taylor and Francis Online.
In this chapter, we consider generic issues affecting the implementation of diagnostics in a burning plasma experiment (BPX). These are, directly or indirectly, caused by the radiation environment. In the first instance, handling nuclear radiation issues becomes a dominant factor in the choice of machine and diagnostic layout, construction, and maintenance. We discuss these integration issues first as they set the background against which more specific issues must be addressed. These include nuclear radiation effects on specific types of components and assemblies such as cables, fibers, and mirrors, and also thermal and mechanical degradation issues that must be considered in all component designs. One important consequence of the maintenance challenges brought about by the radiation environment is that degradation of front-line optical components by particle bombardment, normally handled by component replacement, also becomes far more challenging and in situ mitigation techniques must be sought. For the same reason, recalibration techniques become more difficult. At the same time, BPX operation time is precious and extracting the optimum performance from the device may require the use of more sophisticated diagnostic techniques. Therefore, the requirements on reliability and data availability are more stringent and must be applied more widely than is common on present devices. An important goal of BPX operation is to enable the design of future power plants. We consider briefly the development needs for diagnostics for these and conclude with an assessment of the present state of readiness of the diagnostic community for the detailed design and construction of a full diagnostic set for a BPX.