ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Vittorio Violante, Amalia Torre, Giovanna Selvaggi, George H. Miley
Fusion Science and Technology | Volume 39 | Number 2 | March 2001 | Pages 266-281
Technical Paper | doi.org/10.13182/FST01-A168
Articles are hosted by Taylor and Francis Online.
A three-dimensional analysis of the dynamics of hydrogen isotopes confined within a metal lattice, like palladium or nickel, is presented. It is assumed that the concentration of the hydrogen isotopes, as an atomic fraction, is close to unity and that coherent oscillations of the metal atom electrons near to the Fermi level take place. Coherent oscillations of the Fermi-level electrons in the metal lattice can produce an oscillating electric field within the cell and hence produce a radio-frequency oscillation of ions like protons or deuterons. The trajectories of the ions can be studied by means of the equations of motion. The results show that under proper initial conditions, the closest distance of approach between two ions or between an ion and the nucleus of an atom of the host metal lattice can be reduced below 0.1 Å. An evaluation of the excess of heat production has been done for the D-D reaction within a Pd lattice by approximating the reaction both to an s-wave and a d-wave process, respectively. Last, the effect of the lattice field, which causes the collisions between ions, on the nuclear reaction channel for the D-D reaction is investigated by evaluating the transition probability for a stimulated decay.