ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
Kenneth M. Young
Fusion Science and Technology | Volume 53 | Number 2 | February 2008 | Pages 281-303
Technical Paper | Plasma Diagnostics for Magnetic Fusion Research | doi.org/10.13182/FST08-A1673
Articles are hosted by Taylor and Francis Online.
This paper introduces this special issue on plasma diagnostics for magnetic fusion research. Its primary purpose is to relate the measurements of plasma parameters to the physics challenges to be faced on operating and planned devices and also to identify the diagnostic techniques that are used to make these measurements. The specific physics involved in the application of the techniques will be addressed in subsequent chapters. This chapter is biased toward measurements for tokamaks because of their proximity to the burning plasma frontier, and to setting the scene for the development work associated with ITER. Hence, there is some emphasis on measurements for alpha-physics studies and the need for plasma measurements as input to actuators to control the plasma, both to optimize the device performance and to protect the surrounding material. The very different approach to the engineering of diagnostics for a burning plasma is considered, emphasizing the needs for new calibration ideas, reliability and hardness against, and compatibility with, radiation. New ideas take a long time to be converted into "workhorse" sophisticated diagnostics so that investment in new developments is essential for ITER, particularly for the measurement of alpha particles.