ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
D. Fasel, T. Bonicelli, M. A. Henderson, M. Q. Tran
Fusion Science and Technology | Volume 53 | Number 1 | January 2008 | Pages 246-253
Technical Paper | Special Issue on Electron Cyclotron Wave Physics, Technology, and Applications - Part 2 | doi.org/10.13182/FST08-A1669
Articles are hosted by Taylor and Francis Online.
The ITER electron cyclotron heating (ECH) baseline scheme (2001) is composed of 24 gyrotrons, each generating 1 MW of radio-frequency power at 170 GHz in addition to 3 gyrotrons (1 MW) at 120 GHz for breakdown assist. Considering an efficiency of 45%, which can be achieved with the depressed-collector-type gyrotron (CPD), the amount of electrical power would be in the range of 55 MW. This paper has two purposes. First, it presents requirements that will be imposed on the electrical power supplies with regard to the updated physics needs for ITER presently being discussed. Demanding parameters (like modulation capability, transient margin, and fault clearing) will be described. In this context, the consequences of those new requirements on the technical choices and the impact on the complexity of the power supplies will be discussed. Second, two possible schemes for the ITER reference power supply design for the ECH system will be compared. The advantages (and respective disadvantages) of each solution will be highlighted taking care of the requirements previously presented. In conclusion, a proposal is presented for a revised ECH power supply structure.