ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Fermilab center renamed after late particle physicist Helen Edwards
Fermi National Accelerator Laboratory’s Integrated Engineering Research Center, which officially opened in January 2024, is now known as the Helen Edwards Engineering Center. The name was changed to honor the late particle physicist who led the design, construction, commissioning, and operation of the lab’s Tevatron accelerator and was part of the Water Resources Development Act signed by President Biden in December 2024, according to a Fermilab press release.
D. Fasel, T. Bonicelli, M. A. Henderson, M. Q. Tran
Fusion Science and Technology | Volume 53 | Number 1 | January 2008 | Pages 246-253
Technical Paper | Special Issue on Electron Cyclotron Wave Physics, Technology, and Applications - Part 2 | doi.org/10.13182/FST08-A1669
Articles are hosted by Taylor and Francis Online.
The ITER electron cyclotron heating (ECH) baseline scheme (2001) is composed of 24 gyrotrons, each generating 1 MW of radio-frequency power at 170 GHz in addition to 3 gyrotrons (1 MW) at 120 GHz for breakdown assist. Considering an efficiency of 45%, which can be achieved with the depressed-collector-type gyrotron (CPD), the amount of electrical power would be in the range of 55 MW. This paper has two purposes. First, it presents requirements that will be imposed on the electrical power supplies with regard to the updated physics needs for ITER presently being discussed. Demanding parameters (like modulation capability, transient margin, and fault clearing) will be described. In this context, the consequences of those new requirements on the technical choices and the impact on the complexity of the power supplies will be discussed. Second, two possible schemes for the ITER reference power supply design for the ECH system will be compared. The advantages (and respective disadvantages) of each solution will be highlighted taking care of the requirements previously presented. In conclusion, a proposal is presented for a revised ECH power supply structure.