ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
R. W. Harvey, A. P. Smirnov, E. Nelson-Melby, G. Taylor, S. Coda, A. K. Ram
Fusion Science and Technology | Volume 53 | Number 1 | January 2008 | Pages 237-245
Technical Paper | Special Issue on Electron Cyclotron Wave Physics, Technology, and Applications - Part 2 | doi.org/10.13182/FST08-A1668
Articles are hosted by Taylor and Francis Online.
In overdense plasma for which the plasma frequency exceeds the cyclotron frequency, X-mode, near-perpendicular cyclotron emission does not propagate to the outboard plasma edge. However, under these conditions it remains possible for electron Bernstein waves (EBWs) to transmit emitted radiation from central plasma to the plasma exterior via a mode conversion to electromagnetic waves near the plasma edge. GENRAY is an all-frequencies, three-dimensional ray-tracing code and also calculates EBW emission (EBWE) from thermal or nonthermal relativistic distributions. The numerical methods are based on the earlier HORACE circular plasma code (R.W. Harvey et al., Proc. 7th Joint Workshop and International Atomic Energy Agency Technical Committee Meeting on Electron Cyclotron Emission and Electron Cyclotron Resonance Heating, Hefei, China, 1989), generalized to noncircular plasmas and to electromagnetic EBWs, including a parallel refractive index greater than 1. Emission and absorption are calculated on an array of points along EBW rays emanating from the antenna, and the radiation transport equation is backsolved along the EBW rays to the antenna. Hot plasma dispersion is used along with a relativistic calculation of the thermal or nonthermal emission and absorption. This paper describes the calculation and reports new results for nonthermal EBWE. Along with detailed numerical analysis, EBWE can be used to measure both thermal and nonthermal properties of the electron distribution function.