ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
R. W. Harvey, A. P. Smirnov, E. Nelson-Melby, G. Taylor, S. Coda, A. K. Ram
Fusion Science and Technology | Volume 53 | Number 1 | January 2008 | Pages 237-245
Technical Paper | Special Issue on Electron Cyclotron Wave Physics, Technology, and Applications - Part 2 | doi.org/10.13182/FST08-A1668
Articles are hosted by Taylor and Francis Online.
In overdense plasma for which the plasma frequency exceeds the cyclotron frequency, X-mode, near-perpendicular cyclotron emission does not propagate to the outboard plasma edge. However, under these conditions it remains possible for electron Bernstein waves (EBWs) to transmit emitted radiation from central plasma to the plasma exterior via a mode conversion to electromagnetic waves near the plasma edge. GENRAY is an all-frequencies, three-dimensional ray-tracing code and also calculates EBW emission (EBWE) from thermal or nonthermal relativistic distributions. The numerical methods are based on the earlier HORACE circular plasma code (R.W. Harvey et al., Proc. 7th Joint Workshop and International Atomic Energy Agency Technical Committee Meeting on Electron Cyclotron Emission and Electron Cyclotron Resonance Heating, Hefei, China, 1989), generalized to noncircular plasmas and to electromagnetic EBWs, including a parallel refractive index greater than 1. Emission and absorption are calculated on an array of points along EBW rays emanating from the antenna, and the radiation transport equation is backsolved along the EBW rays to the antenna. Hot plasma dispersion is used along with a relativistic calculation of the thermal or nonthermal emission and absorption. This paper describes the calculation and reports new results for nonthermal EBWE. Along with detailed numerical analysis, EBWE can be used to measure both thermal and nonthermal properties of the electron distribution function.