ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
M. A. Henderson, C. P. Moeller
Fusion Science and Technology | Volume 53 | Number 1 | January 2008 | Pages 220-236
Technical Paper | Special Issue on Electron Cyclotron Wave Physics, Technology, and Applications - Part 2 | doi.org/10.13182/FST08-A1667
Articles are hosted by Taylor and Francis Online.
The remote steering (RS) system (C. P. Moeller, Proc. 23rd Int. Conf. Infrared and Millimeter Waves, September 7-11, 1998, University of Essex, pp. 116-118) provides a method of steering a millimeter-wave beam for electron cyclotron heating (ECH) and current drive (CD) applications without having moveable mirrors close to the plasma. The input beam is coupled into a square corrugated waveguide having a length such that the phase and amplitude profile of the input beam is repeated at the waveguide output. In the most basic implementation, by injecting the input beam at an angle relative to the waveguide axis, the output beam is radiated at that same angle. The steering range (typically to ±12 deg) and the focusing ability are strongly limited because of the restricted space for the launcher in a fusion device, which results in a large deposition profile in the plasma. However, the waveguide and optical arrangement can be modified to either increase the steering range and/or focus the RS system. For example, if a converging beam is injected into the waveguide, the output beam's waist will be projected far from the waveguide aperture. Likewise, a tapered square waveguide can be used to increase the scanning range of the RS system beyond that of ±12 deg. This paper will investigate such hybrid designs of the RS launcher, providing alternative configurations for optimizing the launching configuration, depending on the requirements of a given ECH and CD system.