ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
M. F. Graswinckel, M. A. Van den Berg, W. A. Bongers, A. J. H. Donné, A. P. H. Goede, N. Lopes Cardozo, D. M. S. Ronden, A. G. A. Verhoeven
Fusion Science and Technology | Volume 53 | Number 1 | January 2008 | Pages 208-219
Technical Paper | Special Issue on Electron Cyclotron Wave Physics, Technology, and Applications - Part 2 | doi.org/10.13182/FST08-A1666
Articles are hosted by Taylor and Francis Online.
A design is presented for the electron cyclotron (EC) heating and current drive system of the ITER upper port launchers based on the remote steering (RS) concept. In this concept the millimeter-wave beam is steered by a mirror that is located at the back end of the launcher waveguide. The RS concept has the advantage that the mirror steering mechanism can be situated in the secondary vacuum of the ITER machine where neutron flux and beryllium and tritium contamination is reduced. This allows simpler maintenance relative to a system with a plasma-facing steering mechanism. The optimization is carried out on the quasi-optical elements of the system, including the mirror shapes and positions. The design is assessed for its effectiveness in stabilizing the neoclassical tearing mode (NTM) over a wide range of ITER reference scenarios. The stabilization performance is quantified in terms of the parameter ntm, expressing the ratio between the peak EC wave-driven current density and the bootstrap current density, which parameter should exceed 1.2. The performance is also evaluated in terms of beam-focusing properties and power loading on the mirrors, and an empirical relation between beam size and ntm has been established. The performance achieved meets the requirements for NTM stabilization in all but one of the ITER reference scenarios.