ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
A. Serikov, U. Fischer, R. Heidinger, H. Tsige-Tamirat, Y. Luo
Fusion Science and Technology | Volume 53 | Number 1 | January 2008 | Pages 184-195
Technical Paper | Special Issue on Electron Cyclotron Wave Physics, Technology, and Applications - Part 2 | doi.org/10.13182/FST08-A1664
Articles are hosted by Taylor and Francis Online.
The International Thermonuclear Experimental Reactor (ITER) will use an electron cyclotron resonance heating (ECRH) system in the upper port of the device for plasma stabilization, heating, and current drive by injecting millimeter wave beams into the plasma chamber. The millimeter waves are transmitted to the plasma through long and narrow waveguide channels. The required plasma wall openings could result in enhanced neutron radiation loadings to the ECRH launcher and neighboring reactor components. The analyses aimed at proving that the shielding requirements and all related nuclear design limits specified by ITER can be met for the proposed ECRH launcher design concepts. The nuclear criteria included human safety issues, nuclear waste regulation aspects, and radiation shielding requirements. The proof was conducted by calculating the radiation loads to sensitive components such as the diamond window of the ECRH launcher, the vacuum vessel, and the superconducting magnets and assessing the potential radiation doses to work personnel during shutdown periods. Dedicated computational approaches were developed to handle the related neutron streaming and shielding problems on the basis of three-dimensional Monte Carlo calculations by the MCNP code. Suitable MCNP models of the launcher were generated by the automatic conversion of the underlying computer assisted design models using a newly developed interface program. The results of the analyses show that all radiation design limits can be safely met for the considered launcher and shield designs.